Wednesday, 1 June 2011

Are you tired all the time?

If you are, you might find the substance NADH - Nicotinamide Adenine Dinucleotide helpful. Also known as Coenzyme number one, this substance has recently become available as a nutritional additive, and is a key player in cellular metabolism along with ATP, promoting production of greater levels of ATP and hence higher energy levels available for driving cellular processes. NADH is involved in more than a thousand different metabolic processes. No wonder people feel tired all the time if they lack NADH...

Hence a growing body of evidence from researchers and doctors shows the significant effect of NADH on keeping us energetic and healthy. So do some due diligence on this compound for yourself - you never know, this might be the missing energy link you have been searching for....

To your abundant excellent health,

Dr Ike
Holistic Health Coach and Functional Health Expert

Sources
^ a b c Pollak, N; Dölle C, Ziegler M (2007). "The power to reduce: pyridine nucleotides—small molecules with a multitude of functions". Biochem. J. 402 (2): 205–18. doi:10.1042/BJ20061638. PMC 1798440. PMID 17295611.
^ a b c d e f g Belenky P; Bogan KL, Brenner C (2007). "NAD+ metabolism in health and disease" (PDF). Trends Biochem. Sci. 32 (1): 12–9. doi:10.1016/j.tibs.2006.11.006. PMID 17161604. Retrieved 2007-12-23.
^ Unden G; Bongaerts J (1997). "Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors". Biochim. Biophys. Acta 1320 (3): 217–34. doi:10.1016/S0005-2728(97)00034-0. PMID 9230919.
^ Windholz, Martha (1983). The Merck Index: an encyclopedia of chemicals, drugs, and biologicals (10th ed.). Rahway NJ, US: Merck. p. 909. ISBN 911910271.
^ Biellmann JF, Lapinte C, Haid E, Weimann G (1979). "Structure of lactate dehydrogenase inhibitor generated from coenzyme". Biochemistry 18 (7): 1212–7. doi:10.1021/bi00574a015. PMID 218616.
^ a b Dawson, R. Ben (1985). Data for biochemical research (3rd ed.). Oxford: Clarendon Press. p. 122. ISBN 0-19-855358-7.
^ a b Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992). "Fluorescence lifetime imaging of free and protein-bound NADH". Proc. Natl. Acad. Sci. U.S.A. 89 (4): 1271–5. doi:10.1073/pnas.89.4.1271. PMC 48431. PMID 1741380.
^ Jameson DM, Thomas V, Zhou DM (1989). "Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase". Biochim. Biophys. Acta 994 (2): 187–90. PMID 2910350.
^ Kasimova MR, Grigiene J, Krab K, et al. (2006). "The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions". Plant Cell 18 (3): 688–98. doi:10.1105/tpc.105.039354. PMC 1383643. PMID 16461578.
^ Reiss PD, Zuurendonk PF, Veech RL (1984). "Measurement of tissue purine, pyrimidine, and other nucleotides by radial compression high-performance liquid chromatography". Anal. Biochem. 140 (1): 162–71. doi:10.1016/0003-2697(84)90148-9. PMID 6486402.
^ Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M (2006). "The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry". Anal. Biochem. 352

No comments:

Post a Comment